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Abstract

Lung cancer is the top most cause of morality in U.S despite the reduction of

smoking in recent years, approximately about 27.4% from all cancer deaths. The

incidence of lung cancer has been decreasing in recent years in men but it is still

the second leading cause of morality in males and females following the prostate

and breast cancer respectively. Smoking is the most common risk factor for lung

cancer, Non-small cell lung cancer is the major cause of morality of lung cancer

accounting for 85% of lung cancer. treatment of lung cancer can be classified into

chemotherapy, radiotherapy, surgery and immunotherapy and now targeted ther-

apy has also been introduced for lung cancer treatment. As the hepatotoxicity is a

major issue in the field of medicinal oncology, a large number of chemotherapeutic

drugs produce toxic effect on the liver, resulting in the acute failure of liver.

Therefore, in this study we have performed the hepatotoxicity modeling of drugs

used to cure NSCLC to determine their effects on liver. The generalized liver model

was developed and simulations were performed, it was observed that, Afitinib,

Crizotinib, Erlotinib, Gefitinib, and Paclitaxel produced large hepatotxic effects

on the liver, causing liver damage leading to its failure. However, Carboplatin

and Cisplatin are non hepatotoxic drugs. While Bevacizumab, Gemcitabine, Lor-

latinib, Methotrexate and Pemetrexed are less hepatotoxic drugs.The new dosage

criteria was suggested for the hepatotoxic drugs to overcome the liver damage. In

future, the new suggested dosage criteria can be used and further confirmed in-

vitro. By reducing the drug dose or drug dose schedule we can reduce hepatotoxic

drugs into less or non-hepatotoxic drugs usiing this generalized model.
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Chapter 1

Introduction

1.1 Cancer

Cancer is the second major cause of death worldwide. Overall the prevalence of

cancer has increased and approximately 1,665,540 people suffered from different

types of cancer and 585,720 of them died by 2014 in United States [1]. There-

fore, cancer is serious problem affecting the human health all around the world.

In males, cancers prevalence is highest in prostate, lung and bronchus, colon and

rectum, and urinary bladder respectively. In females, the highest percentage of

cancers types occurs in breast, lung and bronchus, colon and rectum, uterine cor-

pus and thyroid respectively. This data indicates that prostate and breast cancers

are the major cause of morality in men and women respectively. In children, can-

cer prevalence is highest in blood cancer and cancers related to brain and lymph

nodes respectively [2].

Cancer is a genetic disease of somatic cells which contains multiple abnormali-

ties of both number and structure. The studies of tumor specific translocations

in leukemia and lymphomas provided the first direct evidence of cancers which

revealed the importance of oncogenes and transcriptional factors genes in cancer.

While, hereditary cancer is the second major source of information about can-

cer genes. Approximately 93% of all human cancers are non-hereditary that is

1
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caused by environmental factors while only 7% are hereditary [3]. Genes associ-

ated with human cancer formation are underlined into four classes of genes: 1.

Tumor suppressor genes, 2. Proto-oncogenes, 3. DNA mismatch repair genes and

4. Apoptotic genes. Cancer occurs due to a series of successive genetic mutation

leading to change in cell function. The genetic mutations include inactivation of

tumor suppressor genes and activation of oncogenes. Generally, cancer disturbs the

activities of cells leading to dysfunction of important genes that prompts irregular

multiplication of cells [4].

Molecular analysis of cancer cells accumulates data that show multiple genetic

lesions of various combinations of oncogenes and tumor suppressor genes in a

single cancer. Genetic damage of oncogenes results in gain of function and genetic

damages of tumor suppressor genes results in loss of function [5]. The report of

WHO of 2018 shows that cancer is the second major cause of deaths and morality

worldwide causing about 9.6 millions deaths worldwide in 2018. most common

cancers are lung, stomach, breast, colorectal, prostate and skin cancer but deaths

caused by mostly lung, colorectal, stomach and breast cancer of about 1.76 million,

862000, 783000 and 627000 deaths in 2018 respectively [6].

1.2 General Treatment Options

Cancer is treated by different kind of treatments such as therapy, hormonal ther-

apy, radiotherapy, targeted medical aid, surgery and artificial morbidity. The

choice of treatment for a cancer patient is decided by analyzing the state of tu-

mor, phases of sickness and also the general condition of patient. The variety of

severities, variety in durations and locations of tumor, drug resistance, cell origin,

affectability of drugs and differentiation and comprehension of pathogenesis leads

to poor diagnosis, improper visualization and treatment of disease [5].

The interactions between genes and proteins as well as their networks plays a vital

role for understanding of cancer’s molecular mechanism. Hence, it is fundamental

to suggests an idea of systems clinical science which is integration of medicine
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and healthcare related fields like clinical science, omics based innovation, system

biology, computational biology and bioinformatics respectively which helps in en-

hancement, treatment and prognosis of cancer [7].

1.3 Bioinformatics in the Research of Cancer

Cancer is a genetic disease in which cells can not follow normal procedure of cell

division or cell cycle leading to uncontrollable cell division, incorrect arrangement

of chromosomes or have missed large pieces of chromosomes in cancer cell [8]. The

medical field search involves a large number of steps that should be fast to perform

diagnosis and treatment which requires a lot of efforts. Also the completion of

Human Genome Project in 2003 has produced an enormous amount of Biological

data which added pressure to apply Bioinformatics in cancer treatment. Therefore,

the tools of bioinformatics can be helpful for diagnosis and treatment of cancer

are implemented by experts and researchers to extend their research in the field

of cancer [9]. Computerized models are one of those applications of bioinformatics

that provides biological data and information about number of cancer cells in the

body of cancer patient as well as biological state of the cancer patient [10]. In such

a way, experts are now able to observe the tumor growth after cancer therapy which

was difficult to identify before the bioinformatics. In addition, different studies

indicated that gene expressions of cancer cells play vital role, this information helps

in efficient treatment [11]. Bioinformatics can also be applied by using databases

of cancer cell’s expressions and also by the study of drug and tumor responses

[12]. Bioinformatics studies ensure the treatment of several cancers types in near

future. Bioinformatics also provides information to experts and therapists which

helps in the analysis of immune responses for the understanding of controlled and

uncontrolled tumors for the efficient treatment of patients [13].

In other words, by the help of mathematical and computational models, bioin-

formatics explains the effects of radiation and chemotherapy and therapists uses

bioinformatics databases and search engines that are readily available to everyone
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to find biological data for cancer research and treatment. By the discovery of

HGP, bioinformatics can be applied in designing the drug for cancer or any other

disease’s treatment, to avoid the effects of drug and to develop better drug delivery

system [8].

1.4 Modeling and Simulations in Cancer

Research

If the protein structure is known, different details of protein and mutations that

cause change of protein structure can be determined through different techniques

such as NMR, FRET, EXAFS and other biophysical methods but these techniques

have some limitations due to their sensitivity, applications and time scales [14].

Therefore, computer aided studies along with molecular studies can provide de-

tails that cannot be obtained through experiment. Therefore, molecular modeling

approaches are useful in clinically oriented researches, however, these methods are

inaccessible to researchers due to lack of understanding of their use, advantages,

disadvantages and limitations [15].

Molecular modeling is the studies of application of computer generated models

on molecular studies of biomolecule. These computer generated models can be

used to stimulate the processes as fast as 10-15 seconds or as slow as few seconds.

How accurate the results are and how much detailed the model provides is clearly

depends on size of biomolecule and time duration of system. These models help to

studies the sub angstrom differences of structures and their influence on binding

of drug molecule to its receptor. The differences in size lead to use of different

method, so generally, for accurate method to produce meaningful result, there will

be need of more time and more computational resources. Therefore, the problem

suggests the method of modeling to be used [16].
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1.5 Lung Cancer

Lung cancer is the top most cause of morality in U.S despite the reduction of

smoking in recent years, approximately about 27.4% from all cancer deaths. The

incidence of lung cancer has been decreasing in recent years in men but it is still

the second leading cause of morality in males and females following the prostate

and breast cancer respectively [17]. Though there have been advancements in

treatment of lung cancer in recent years but the survival span for average five

years is 15% only [18]. Most of the time, lung cancers are diagnosed at late

stage leading to low chances of cure for the cancer but surprisingly there are low

chances of cure for stage 1 diagnosis even which increase the need of understanding

of molecular alterations that causes poor prognosis and to use this information for

better diagnosis and treatment of cancer patient [19].

1.5.1 Risk Factors

Smoking is the most common risk factor for lung cancer because 90% of females

and 79% of males having lung cancer are found to be smokers [20]. Passive smoking

is the second most common cause of lung cancer in adults for approximately 3000

deaths each year due to exposure to cigarettes smoke depending on intensity and

duration of exposure to smoke [21].

In occupational risk factors, the most common factor for lung cancers is exposure

to asbestos, the chances of lung cancer reaches to 60% for smokers who are also

exposed to asbestos [22]. Other than asbestos, exposure to arsenic, radon, vinyl

chloride, nickel, chromium and ionizing radiation are also the most common en-

vironmental and occupational risk factor for lung cancer in adults [23]. Patients

having non-malignant lung diseases such as TB, chronic obstructive pulmonary

disease and idiopathic pulmonary fibrosis have also increased lung cancer rates

[18].
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1.5.2 Types of Lung Cancer

On the basis of classification lung cancer is characterized into small cell lung

cancer represents 15% of lung cancer and non-small cell lung cancer represents 75-

85% of lung cancer. NSCLC is further classified into adenocarcinoma, squamous

cell carcinoma and large cell carcinoma. For the choice of chemotherapy, this

classification was helpful in past decades [24].

1.5.2.1 Small Cell Lung Cancer (SCLC)

Small cell lung cancer is one of the most deaths causing malignancy worldwide

with less than 7% rate for average 5-year survival rate. Tobacco exposure is the

main cause of high mutations leading to SCLC [25]. In past few decades, decrease

in use of cigarettes resulted in decreased incidence of SCLC but SCLC still remains

major cause of deaths accounting for 14% of all lung cancers and approximately

30,000 patients annually in U.S. Smoking being the major cause of SCLC with

only 2-3% patients of SCLC are non-smokers [26].

The origin of small cell lung cancer is unknown while neuroendocrine cells (NECs)

and neuroendocrine progenitors (NEPs) are assumed or considered to be possible

source of SCLS [27]. Ki67 protein in case of SCLC is usually greater than 50-70%

indicating high proliferation and extensive mitoses and necrosis of cancer cells[28].

In majority of SCLS patients, tumor suppressor genes TP53 and RB1 are mutated

and PTEN mutations are present in 10-18% [29].

1.5.2.2 Non- Small Cell Lung Cancer (NSCLS)

Non-small cell lung cancer is the major cause of morality of lung cancer account-

ing for 85% of lung cancer. NSCLC is further classified into adenocarcinoma,

squamous cell carcinoma and large cell carcinoma respectively [30].

Adenocarcinoma is the most common type of lung cancer comprising of about 40%

of all type of lung cancer. It originates from small airway epithelial type 2 alveolar
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cells that secrete mucus [31]. Smoker and non-smoker males and females affects

from adenocarcinoma regardless of their gender and age [32]. Large particles can-

not enter in lungs due to addition of filters in cigarettes leading to prevalence of

adenocarcinoma in periphery of lungs. Therefore, deeper inhalation of smoke of

cigarettes causes peripheral lesions [33]. As compared to other types, adenocar-

cinoma grows slowly therefore, having greater chance of diagnosis and treatment

[30].

Squamous cell carcinoma constitutes 25 to 30 % of all cases of lung cancer. It

originates from squamous cells of airway epithelial cells to bronchial tubes of the

center of the lungs. SCC is associated with cigarette smoke [34].

Large cell carcinoma is third type of NSCLC comprising 5 to 10% of all lung can-

cers. In this carcinoma there is no evidence of squamous and glandular secretions

therefore it occurs in central parts of lungs, near lymph nodes and into chest walls.

LCC is also associated with exposure of tobacco [35].

1.5.3 Treatment Options

Treatment for lung carcinoma depends on different factors such as cancer specific

cell type, cancer type, how much it is spread and physical condition of cancer

patient. Therefore, on the basis of all these factors, treatment of lung cancer can

be classified into chemotherapy, radiotherapy, surgery and immunotherapy and

now targeted therapy has also been introduced for lung cancer treatment [36].

For patients with stage 1 to stage 3 NSCLC, surgery is the choice of treatment

[37]. Recent studies suggest that chemotherapy before surgery provides better

survival rate for NSCLC patients. The tumors that cannot be removed through

surgery in case of NSCLC can be cured by radiotherapy and chemotherapy [38].

Patients of nonsquamous carcinoma with advanced stages can be treated with

targeted therapies of antivascular EGF agent bevacizumab. Patients treated with

bevacizumab combined with chemotherapy has shown increased survival rate than

treated with chemotherapy alone [39]. For the treatment of SCLC, chemotherapy
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combined with radiotherapy has shown greater survival rate. Palliative and hospice

care are very important for chronically ill patients for better end of life treatment.

The doctors can suggest the most appropriate option of treatment to be used [18].

Table 1.1: Treatment options for Lung Cancer according to stage of the
cancer [36].

Stage of Lung

Cancer

Primary Treat-

ment

Adjuvant Ther-

apy

5 year

survival

rate (%)

NSCLC

I Resection Chemotherapy 60-70

II Resection

Chemotherapy

with or without

radiotherapy

40-50

IIIA(resectable)

Resection with or

without preopera-

tive chemotherapy

Chemotherapy

with or without

radiotherapy

15-30

IIIA (un-

resectable)

or IIIB (in-

volvement of

contralateral or

supraclavicular

lymph nodes)

Chemotherapy with

concurrent or subse-

quent radiotherapy

None 10-20

IIIB (pleural ef-

fusion) or IV

Chemotherapy or re-

section of primary

brain metastasis and

primary T1 tumor

None

10-15 but

two year

survival %
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SCLC

Limited diease

Chemotherapy

with concurrent

radiotherapy

None 15-25

Extensive Dis-

ease
Chemotherapy None less than 5

1.6 Purpose

As the hepatotoxicity is a major issue in the field of medicinal oncology, a large

number of chemotherapeutic drugs produce toxic effect on the liver, resulting in

the acute failure of liver. Therefore, several models should be developed in-silico

that predicts the effects of chemotherapies or other medicinal treatment in cancer.

Hence, the purpose of this study is to model the liver of human to determine the

toxic effects produced by chemotherapies used in NSCLS on liver.

1.7 Problem Statement

As the hepatotoxicity is a major issue in the field of medicinal oncology, the prob-

lem statement of this study is to design a liver model to determine the drug induced

hepatotoxicity in NSCLC through modeling and simulations and suggestion of new

least hepatotoxic dosage regimens.

1.8 Aims and Objectives

• Development of Liver model that can be used in general, for all diseases.

• Estimation of toxic effects of NSCLC chemotherapies on Liver.
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• Alteration and suggestion of drugs dosage and regimens on the basis of esti-

mations

1.9 Scope

The drug induced hepatotoxicity is a significant cause of liver damage, resulting

in liver transplant to about 50% of cases. However, major population of world

cannot afford expenses of liver transplant. Therefore, the developed liver model

will be helpful in the selection of those drugs and dosage regimens which do not

produce hepatotoxicity, therefore, this study is multi-dimensional in nature be-

cause of involving Systems biology and Bioinformatics therefore it has wide range

of scope.



Chapter 2

Literature Review

2.1 Hepatotoxicity

Hepatotoxicity refers to chemical-driven liver injury. Drug-induced liver damage

is one of major cause of acute and chronic liver disease. The liver is a major

organ that plays a central role in clearing chemicals and transforming them hence

susceptible of toxicity from these chemical agents. Toxic liver injury reproduce any

known pattern of injury such as necrosis, steatosis, fibrosis, cholestasis and vascular

injury. Some of the medicinal agents can injure the liver when taken in overdose

or even in the therapeutic ranges may lead to liver injury. Chemical agents that

are used in laboratories and industries, natural chemicals like microcystins and

herbal remedies may also cause hepatotoxicity. Chemicals or chemical agents that

induce hepatotoxicity are called hepatotoxins [40].

2.1.1 Drug Induced Hepatotoxicity

According to gastroenterologists, hepatotoxicity is cause of acute liver injury in less

than 1% cases but in USA and Europe, drug-induced liver injury has been reported

for the most common cause of acute liver failure [41]. In France and Iceland, the

annual incidence of DILI is 14-19 per 100,000 individuals [42]. Drug induced

11
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liver injury is major cause of attrition of agents that are uses in development

of drugs as well as most frequent cause of drug with-drawls, project termination

and restrictions [43]. From 1969 to 2002, 76 drugs had been withdrawn from

market from which 12 were accountable for hepatotoxicity. During drug approval,

liver signals escape detection leading to post-marketing restrictions, false positive

DILI measurements leads to unimportant attrition thus contributes to number of

economic issues related to DILI [44]. Patient who uses acetaminophen at single

dose greater than 7.5 g, or if plasma concentrations exceeds to 200 or 100 or 8

hours after ingestions, causes acute liver injury in that patient. The licensed dose

of APAP is 4g per day for 2 weeks results in elimination of ALT above 3x upper

limit of ULN in 1/3 of patients. This dose dependent APAP-induced liver injury is

known as intrinsic DILI which is predictable and reproducible in preclinical models

[45].

The commencement of idiosyncratic DILI (IDILI) in contrast to intrinsic DILI is

responsible for about 10-15% of acute liver injury in USA though it is very rare,

and unpredictable [46]. IDILI is caused by change in start and end time of drug

usage (weeks to months) and not having the clear dose need [47]. Drug-protein

adducts known as neoantigens by histocompatibility complex class II, are formed

by drug or its metabolites interacting with host protein, triggers the immunoal-

lergic reaction. Patients having liver injuries like viral hepatitis and inflammatory

conditions are more vulnerable to immunoallergic injuries. After the initial injury,

other mechanisms like mitochondrial injury, proinflammatory cytokines, endoplas-

mic reticulum and oxidative stress can further intensify the injury leading to acute

DILI. The understanding of host factors that make an individual vulnerable are

being focused in ongoing pharmacogenetic research [48].

2.1.2 Models

Pharmaceutical companies have adopted computational modeling approaches to

estimate the toxicity, efficacy and mechanisms adopted by pharmaceutical ingre-

dients [49]. In early developmental stages of prediction models, the constructed
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models did not show satisfactory predictive power and depended on experimen-

tal data for their better performance. Some of the researchers applied molecular

signatures, for example ATL, AST and ALP that are commonly evaluated in di-

agnostic estimation of hepatocellular damage [50]. In recent years, for prediction

models, machine learning algorithms have been deployed to gain better predictions

[51].

Nonetheless, experimental data have limited use in development of prediction mod-

els. So, many researchers have used compound properties and structural features

for computational predictions.

Green et al. developed a model using structure-activity relationship for potent

hepatotoxic agent or compound. The hepatotoxic compounds were characterized

into four classes in association with hepatotoxicity: 1. no evidence, 2. weak evi-

dence, 3. animal hepatotoxicity, and 4. human hepatoxicity. The model yielded a

concordance of 56% , sensitivity of 46% and specificity of 73% for hepatotoxicity

[52]. The classification model developed by Ekins et al. used Bayesian modeling

method integrated with molecular and finger descriptors. the evaluation of this

model yieled a concordance of 60% for internal and 64% for external validation

respectively [53]. By using QSAR, Rodgers et al. developed a model in which they

used adverse effects of drugs on liver as dataset. They applied the information on

hepatotoxic enzyme markers but these enzyme markers may fluctuate because of

other factors throughout the day [54] .In addition, another model has been devel-

oped by using quantitative-structure-activity relationship (QSAR) by Huang et al.

in which they used variety of descriptors including fingerprints. The model’s per-

formance was very good with an accuracy of 79.1% for internal validation. They

also predicted the hepatotoxicity of Traditional Chinese Medicines [55]. Futher-

more, an insilico prediction model has been developed by Zhang et al. for DILI in

whih they used five machine learning algorithms and 3 different fingerprints. Their

model yielded a concordance of 66% by using Support Vector Machine Algorithm

and FP4 fingerprints, as well as identification of important substructure patterns

associated with liver injury [56]. Regardless of these far-reaching efforts to predict

drug-induced liver injury or damage, in contrast to QSAR models available for
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mutagens, there are no specific QSAR models for DILI. Furthermore, the infor-

mation about significant association of substructures with DILI is not enough or

less known [57].

2.2 PK/PD Modeling and Simulations with

respect to Hepatotoxicity

Pharmacokinetic (PK) and pharmacodynamic (PD) information emerge from the

logical prelude of present-day pharmacotherapy. Pharmacokinetics portrays the

medication focus time courses in body fluids as a result of the organization of

explicit medication measurements, where as pharmacodynamics is the forecast

of watched impacts in light of the fact that of a particular grouping of a med-

ication. The reason for PK/PD-demonstrating is to associate pharmacokinetics

and pharmacodynamics in order to develop and evaluate portion fixation reaction

connections and along these lines delineate and predict the impact time courses

of a medication portion [58]. By and large, in light of the essential physiolog-

ical process, PK/PD displaying should be favored at plausible occasions. The

all-encompassing use of PK/PD displaying is believed to be useful for medication

progression what’s more, what’s more, associated pharmacotherapy will without

a doubt improve the present state of therapeutics.

2.3 Drugs Used for Treatment of NSCLC

We have selected Non-small cell lung cancer due to its highest morality rate and

retrieved all the drugs that are used for the treatment of different stages of NSCLC

through literature. The detailed information of the drugs is given below.
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2.3.1 Afatinib

Afatinib (an EGFR TKI) is a second- line chemotherapy , approved in April 2016,

used for the treatment of patients with non-small cell lung cancer specifically squa-

mous cell carcinoma progressing on or after a platinum-based chemotherapy [59].

Afatinib is a noval oral drug that is permanent ErbB family blocker having wide

range of activity of tumor cell lines possesses an ErbB signalling network which is

hyperactivated [60][61]. Afatinib has shown clinical adequacy in phase III clinical

trials in NSCLC patients. Afatinib in 2013, was allowed for first line treatment

of NSCLC with EGFR positive mutation [62]. Study of LUX Lung 3 and LUX

Lung 6 reveals that progression free survival rate has increased with treatment of

afatinib as compared to standard chemotherapy in advanced non-small cell lung

cancer patient with positive EGFR mutation [63][64]. The suggested oral dose

of afatinib is 40mg per day, though the maximum dose is 50 mg once a day and

minimum dose is 20 mg once a day depending upon the tolerance of patients [62].

Figure 2.1: Chemical structural formula of Afatinib retrieved through [62]

2.3.2 Bevacizumab

Bevacizumab is approved protein based therapies which is a monoclonal antibody

that binds to and targets the vascular endothelial growth factors to inhibits the
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formation of new blood vessels known as neoangiogenesis [65]. Bevacizumab de-

rived from murine antibody A.4.6.1 when inducted in murine xenograft models, it

obstruct the growth of number of human cancer cells as well as CALU-6 that is an

NSCLC model [66][67][68]. According to studies, reduction in metastases has been

observed in addition of inhibition of growth of cancer tumor [69]. Bevacizumab

when combined with carboplatin or paclitaxel increases the rate of response upto

31.4 % from 18.8 %, average progression time increases from 4.2 months to 7.4

months and survival rate increases from 13.2 to 14.2 months respectively as com-

pared to alone chemotherapy of bevacizumab [70].

Figure 2.2: trutural formula of Bevacimuab retrived through SwissADME web
tool.

2.3.3 Crizotinib

Patients having metastatic non small cell lung cancer that occurs due to mutation

in expression of anaplastic lymphoma kinase (ALK) can be treated by crizotinib

that is tyrosine kinase inhibitor [71]. ALK is a gene that inhibits apoptosis and

increase the cell growth so crizotinib is inhibitor of tyrosine kinase that decrease

the phosphorylation of ALK [72]. It is approved as a single agent rather use in

combine therapy [73]. The suggested oral dose of crizotinib is 200-250 mg twice a
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Figure 2.3: Structural formula of Crizotinib retrieved through [75]

day for the cycle of 28 days. In case of 8 weeks of continuous usage, the disease

control rate exceeds to 87% including 57% patients shows tumor shrinkage and

33 % patient shows stable disease during the period of treatment. However the

survival rate is 72% among the patients treated with crizotinib [74].

2.3.4 Erlotinib

Erlotinib is a novel drug that inhibts the activity of HER1 and EGFR tyrosine

kinase in pateints suffering from Non-small cell lung cancer. It is reversible and

direct inhibitor enzyme that decrease the autophosphorylation of HER1/EGFR in

cancer cells with 20nmol/L inhibitory concentration. Erlotinib prevents cell pro-

liferation depending on EGFR at nanomolar concentrations and it also blocks the

G1 phase of cell cycle [76]. In mice, erlotinib decreases the autophosphorylation

of HER1/EGFR by more than 70% for over 12 hours in human tumor xenografts

when orally administered. Daily oral administration of erlotinib in xenografts of

human head and neck cancer and squmous cell carcinoma in athmic mice no-

ticeably inhibits the growth of HN5 and A431 respectively [77]. The minimum

approved oral dose of erlotinib is 20 mg in the form of tablet and maximum tol-

erated oral dose is 150 mg tablet respectively [78]. The pharmacokinetic studies
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of erlotinib suggests that metabolism of drug is performed by oxidation of cy-

tochromes CYP3A4 and CYP3A5 of liver as well as cytochrome CYP1A1 of lungs

respectively [78].

Figure 2.4: Structural formula of Erlotinib retrieved through [79]

2.3.5 Gefitinib

Gefitinib is also a tyrosine kinase inhibtor that activates the mutations in EGFR

resulting the inhibition of epidermal growth factor receptor in NSCLCs. These

mutant EGFRs reportedly activate the AKT and STAT signaling pathways that

support cell survial and reduces cell proliferations [80]. The clinical response

of Gefitinib in non-small cell lung cancer varies in population, showing higher

rates in non smoker, women and patients suffering from bronchioloalveolar cancer

and adenocarcinoma histology [81]. The mutations of EGFR induced by gifitinib

are located at exons 18-21 that encodes for tyrosine kinase domain and most

common mutations are deletions of exon 19 and L858R missense mutation at exon

21 respectively [82][83]. the treatment of metastatic non-small cell lung cancer

through gifitinib is consist of 250 mg tablet once a day untill disease development

and intolerable toxicity [82].
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Figure 2.5: Chemical structure of Gifitinib retrieved through [84]

2.3.6 Lorlatinib

Lorlatinib is a noval, reversible, oral potent that is ATP viable macrocyclic third-

generation tyrosine kinase inhibitor of ALK and ROS1. This potent and selected

third generation inhibitor is designed to overcome the mutations causing ALK re-

sistance by going through blood brain barriers [85]. Lorlatinib shows nanomolar

effectiveness for wild-type ALK as well as it is effective for ALK-resistant mutants

such as ALK G1202R [86]. Lorlatinib is highly selective against ALK that tar-

gets a specific residue on ALK domain which is leucine at position 1198 that is

present on 25% of kinases respectively [85]. Lorlatinib also shows antitumor ac-

tivity against various xeograft models that are ALK-positive NSCLC. Moreover,

lorlatinib inhibts the activity of ROS1 and for in vitro and in vivo it keeps acti-

vating against ROS1 G2032R [87]. The approved oral dose for lorlatinib ranges

from 25-100 mg once a day until disease progression, unbearable toxicity, patients

unwillness or death [88].
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Figure 2.6: Chemical structure of lorlatinib obtained from [89]

2.3.7 Pemetrexed

Folate serves as coenzyme in many metabolic pathways for the synthesis of DNA.

Folate is necessary for synthesis of purine and pyrimidine base, upon which pro-

liferation of cancer cells is dependant [90]. Therefore, Pemetrexed is an analog

of folate which reduces the folate activity by resulting in disruption of activity of

those enzyme that require folate such as DHFR, GARFT and TS enzymes respec-

tively [91][92]. Dihydrofolate reductase (DHFR) is required for purine and pyrim-

idine synthesis is the main target of methotrexate, however, thmidylate synthase

which is required for synthesis of thymine is the primary target of pemetrexed. In

addition , AICART is folate dependant enzyme which is responsible for protein

synthesis and cell growth of tumor cell is the secondary target of pemetrexed [93].

Phase I studies of pemetrexed dose escalation shows that adminstration of peme-

trexed as a single agent, dose of 600 mg/m2 for more than 10 min after every 21

days is optimal for the studies of phase II [94][95].
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Figure 2.7: Structure of pemetrexed obtained from [96]

2.4 Liver

The liver is the most significant organ of the body, being domed in shape, playing

role in the metabolism of nutrients and compounds. It also helps in the excretion

of several waste metabolites [97]. Basically, it manages the influx and efflux of

substances from the digestive system and distributes them to blood circulatory

system, dysfunction of the liver can cause death of an organism within minutes.

The upper region of liver is linked with diaphragm whereas, its lower posterior

region is located above the abdomen, it is linked to intestine, pancreas, gallbladder,

and esophagus [98]. It weighs around 1500 g accounting for 2.5% of overall body

weight and is situated in the upper right corner of the stomach area, acting as a

route for venous blood enriched with several nutrients. The liver performs more

than 500 metabolic functions, bringing about blend of items that are discharged

into the circulation system [99].
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2.4.1 Basic Structure of Liver

The liver is divided into 4 parts: right, left, caudate, and quadrate. The left and

right regions are the biggest, while the caudate and quadrate are little and found

posteriorly. Two ligaments, attached to liver are noticeable anteriorly. Superiorly,

the falciform tendon iseparates the right and left areas beneath the falciform lig-

ament, a round ligament is attached, appearing as a protrusion from liver. The

gallblader is also attached to the lower region of right lobe of liver [99]. The

blood vessels, hepatic arteries, portal veins, lymphatics, nerves and hepatic bile

duct supply the blood to liverthrough their junction; hilus. From the hilus, they

branch and re-branch inside the liver to shape a framework that move together in

a course structure. The diagram of liver obtained through [98] is shown in figure

2.8.

Figure 2.8: The structure of liver obtained through [98]

2.4.2 Histology of Liver

The liver lobule is the elementary functional unit of liver having normal size of a

sesame seed with hexagonal shape, the primary structures of a liver lobule include
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hepatocytes sheets forming the lobule, portal veins at the ends of hexagon, central

veins, sinusoids, kupffer cells, interspaces between hepatocytes and sinusoids, and

bile canaliculi (small canals) [100].

Figure 2.9: Design of liver at cell level.

In Figure 2.9 (A) red color demonstrates an adult liver, green color represents ad-

ditional hepatic ducts and gall bladder and yellow color demonstrate the stomach

and intestines. The additional hepatic duct framework comprises of the hepatic

ducts (hd), which chanel bile from the liver to common hepatic duct (chd), via

cystic hepatic duct (chd) to gall bladder and via common bile duct (cbd) to the

duodenum. (B) A schematic representaion of cellular design of the liver demon-

strating the hepatocytes (pink in color) that are arranged in hepatic plates which

are separated by sinusoid spaces that are radiating along a central vein. Bile

canaliculi chanel bile into bile ducts (green in color), that runs parallel to hepatic

arteies (red in color) and portal veins (blue in color) which forms the “portal triad.

The portal triads contain three vessels: a hepatic portal arteriole, a hepatic portal

venule, and a bile duct. The blood flows in same direction from both arteries

and veins because of the presence of sinusoids toward the central vein, leading to

the hepatic vein and the inferior vena cava. Secreted bile flows in the opposite

direction – through the bile canaliculi causes the bile to flow in opposite direction
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away from the central vein, toward the portal triad, and excreting through the bile

duct. During the flow of blood through the sinusoids and the interspaces between

hepatocytes and sinusoids, it results in the storage of nutrients in hepatocytes,

whereas Kupffer cells engulf the bacteria and broken blood cells [101].

2.4.3 Distribution of Blood Pressure in Liver

Blood pressure in the vessels and the distribution of pressure inside the liver, is

basically comparative for many species. Pressure of the hepatic artery, beginning

from the plummeting aorta and the celiac trunc, is viewed as equivalent to the

pressure inside aorta. This incorporates a high pulsatile pressure somewhere in

the range of 120 and 80 mmHg with a recurrence equivalent to the pulse. Vessel

consistence causes a slow diminishing in throb as the hepatic supply route branches

and re-branches inside the liver. Once at the sinusoidal area, pulsation sufficiency

diminishes to for all intents and reaches to zero and pressure drops to roughly 2-5

mmHg [102]. On the other hand, pressure in the vein, starting from vessels of the

stomach related tract, has no pulse and a pressure of 10-12 mmHg. In the sinusoids,

both venous and hepatic blood vessel pressure is 3-5 mmHg. Subsequently, the

pressure drop inside the liver is considerably less in the entrance venous framework

than in the blood vessel framework. The pressure drop from the gathering focal

veins to the vena cava is then around 1-3 mmHg, fluctuating marginally with

breath [100].

2.4.4 Distribution of Blood Flow in Liver

Total blood flow of human liver shows about 25% of the output from heart, up to

1500 ml/min. Hepatic blood flow is subdivided in 25-30% for the hepatic artery

(500 ml/min) and the for the portal vein (1000 ml/min). Expecting a human

liver weighs 1500 g, complete blood flow in liver is 100 ml/min per 100 g liver

[103]. Contrasting this standardized blood flow rate with different species, it very

well may be inferred that all out liver blood flow is 100-130 ml/min per 100 g
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liver, autonomous of the species. The proportion of blood vessel: blood stream is

species-subordinate. The hepatic artery starts straightforwardly from the aorta,

and is in this way immersed with oxygen [104].

It represents 65% of complete oxygen supply to the liver. The hepatic artery

likewise assumes a vital job in liver and connective tissue perfusion. It likewise

makes the bile duct secure. The blood from the entrance vein is nutrient rich

gotten from the digestive system and permits the hepatocytes to play out their

roles. Blood from the hepatic artery and the vein enters in the sinusoids [105].In

any case, late examinations by others just as our own perceptions have uncovered

that there are both normal and separate channels for blood vessel and for entrance

of blood. The hepatic artery perfuses the liver vascular bed in a dotted design,

while the vein perfuses the liver consistently. The liver can manage chiefly blood

vessel stream by sphincters, arranged at the in-and outlets of the sinusoids. A

standout amongst the most vital triggers for sphincter work is the requirement for

steady oxygen supply. In the event that the rate of oxygen conveyance to the liver

differs, the sphincters will respond and the proportion of blood vessel: entryway

blood stream changes [106].



Chapter 3

Material and Methods

3.1 Selection of Disease

The key step in the research domain involves identification of problem to be stud-

ied. For current research project, disease was selected as a problem for which

investigation was conducted. Diseases exist in wide range of verities, for example

infectious diseases, heart disease, autoimmune diseases, liver disease and cancer.

All diseases have their morbidity and mortality ratios but cancer has been found

to be associated with leading cause of deaths around the globe with major bur-

den of diseases. Therefore, cancer disease was selected for this research. Cancer

have many types but the highly ranked and common cancers are lung, breast,

skin and colorectal cancers. Among all, lung cancer is second most leading cause

of moraility and deaths worlwide. Small Cell lung Cancer and Non-Small lung

cancer are the two types of lung cancer causing 15% and 85% deaths respectively.

Therefore we have selected NSCLC because of its greater impact and morality

worldwide. This step of disease selection was carried out thoroughly by litera-

ture review, for which Google Scholars, PubMed, research gate and many other

literature databases were visited.

26
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3.2 Selection of FDA Approved Drugs

Drugs have the ability to cure, inhibit or lower the effects of certain disease but

drugs are also vulnerable to induce acute liver injury known as hepatotoxicity or

Drug-induced liver injury [107]. This hepatotoxicity of chemical agent provides

reason for a certain drug are withdrawn from market at the late stages of its

discovery [108]. Thus the drugs that are used in the treatment of Non-Small

Cell Lung Cancer were retrieved from literature and were validated by DrugBank,

PubChem, ChemSpider to investigate their hepatotoxicity in order to suggest safe,

less hepatotoxic and more effective drugs. The criteria set for the retrieved drugs

include: (i) those drugs that were already available in market and are consumed,

(ii) under investigational drug that were net introduced commercially in the market

and (iii) drugs subjected towards clinical trial [110].

3.3 Dosage Criteria Identification

Drug dose taken at certain frequency level is termed as dosage e.g one tablet three

times a day. For each of the retrieved drug, dosage criteria were identified using

DrugBank database. The dosage of drug and its inflow and outflow in the process-

ing compartments of human body have both favorable and adverse effects. There-

fore, dosage criteria have been identified through DrugBank to check the effect of

drugs at certain dose on the different compartments of liver and to suggest them as

either hepatotoxic or non/less hepatotoxic. DrugBank (http://www.drugbank.ca)

is basically an online database readily available to use, provides information about

biochemical and pharmacological design of drugs, their targets, the mechanism of

action of drugs, their in-silico design, discovery of drug target, prediction of drug

metabolism, prediction of drug interaction and general pharmaceutical informa-

tion [111].
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3.4 Phyiochemical Properties of Drugs

Physicochemical properties of drugs are requisite to determine the proper forma-

tion and delivery mechanism of a drug [112]. Thus a necessary step to determine

the physiochemical properties of collected drugs was done through DrugBank and

validation was performed by Protox and PubChem. ProTox, a server to predict

median oral lethal doses (LD50 values) and toxicity classes in rodents. It also spec-

ify possible toxicity targets on the basis of collected protein–ligand-based pharma-

cophores, hence providing the suggestions for the toxicity development mechanism

[113].

3.5 Parameters Identification and Estimation

The parameters for different parts of human liver were investigated and retrieved

through literature. These parameters were included blood flow rate in liver and

weight of all compartments of liver. These parameters were estimated in matlab

through ODE solver. The physiochemical parameters for drugs in the form of drug

dosage, drug absorption rate, drug clearance rate, mol weight etc. were investi-

gated and retrieved through pkCSM. The pkCSM is a web server developed on

the basis of graph based signatures which helps in prediction of absorption, distri-

bution, metabolism, excretion, and toxicity (ADMET) properties in development

of valuable drug [114].

3.6 Mathematical Formulation

For each part of liver model, ODE’s (ordinary differential equation) were devel-

oped. Mathematical modeling is the conversion of problems into mathematical

formulas which in turn helps in analysis of problem and providing a better so-

lution for that particular problem [115]. ODE’s based modeling provide kinetic

information of biological system. Hence, these are widely used in system biology
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helping in explanation of time-varying effects of biological process and stability of

biochemical agents that are not known in experiment [116].

3.7 Development of Liver Model

The key step of this research work was to develop a liver model for the purpose of

determining hepatotoxic effects of drugs in the MATLAB software. The model was

developed on the basis of analysis of human liver anatomy. The model comprised

certain compartments such as; Right Lobe, Left Lobe, Coronory ligament, Falci-

form Ligament, Ligamentum Teres, Gall Bladder and Linked Part of Pancrease.

MATLAB is a high through-put software that is used for technical computation,

providing integrated environment of visualization, programing, simulations, and

computation. Matlab promotes an advanced environment of programming lan-

guage. MATLAB is superb tool for teaching and research [117].

3.8 Induction of Drug Dosage into Model

The dosage criteria identified for each retrieved drug through Literature [118] have

been inducted into the newly build liver, simulation time and days were set and

simulations were performed.

3.9 Hepatotoxicity Modeling

Any injury of liver that is driven by means of drug or some chemical is known as

Hepatotoxicity. Hepatotoxicity modeling was performed in the Matlab simbiology

tool box of MATLAB. It provides system for simulations and sensitivity analysis.

It uses ODE’s to stimulate drug profiles depending on time and its efficacy [119].
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3.10 Analysis of Simulation Results

The results of simulation were analyzed, and least/non hepatotoxic drugs were

suggested to be use in future. However for the remaining hepatotoxic drugs new

dosage criteria were designed and the drugs were validate by performing simula-

tions. The applied methodology for this research is shown below in the form of

flow chart.

Figure 3.1: Flow chart of Methodology
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Results and Discussions

4.1 Collection of Drugs Dataset

The drugs that are used for the treatment of non-small cell lung cancer were

retrieved through literature and their dosage, class, type of cancer, mode of intake

and their status have been accessed through database of Drug Bank. the detailed

information is given below in table 4.1.

Table 4.1: The information of all drugs that are used for treatment of different
types of NSCLC

Drug Name Dosage Status Class
Mode of In-

take

Afatinib
Tablet

20-40 mg
Approved

Dia zanaph-

thalenes
Oral

Bevacizumab

Injection

100mg

/ 4mL-

400mg/16mL

Solution 25

mg

Approved, In-

vestigational

Carboxylic

Acids and

Derivatives

Intravenous

31
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Carboplatin
Solution 10

mg
Approved

Carboxylic

acids and

derivatives

Intravenous

Cisplatin

Injection

1mg/mL

Liquid 1-5

mg

Approved Protein Intravenous

Crizotinib
Capsule

200-250 mg
Approved

Pyridines and

derivatives
Oral

Erlotinib
Tablet

25-150 mg

Approved, In-

vestigational

Dia zanaph-

thalenes
Oral

Gefitinib
Tablet 250

mg

Approved, In-

vestigational

Dia zanaph-

thalenes
Oral

Gemcitabine

Powder for

solution

100-1000mg

Approved
Pyrimidine

nucleosides
Intravenous

Lorlatinib
Tablet

25-100 mg

Approved, In-

vestigational

Macro lac-

tams
Oral

Methotrexate

Tablet 2.5

mg, In-

jection 25

mg/1mL

Approved

Carboxylic

acids and

derivatives

Oral, Subcu-

taneous

Paclitaxel

Injection

100-200

mg/mL

Approved,

Vet Approved
Prenol lipids Intravenous

Pemetrexed

Disodium

Injection,

Powder

100-1000

mg

Approved, In-

vestigational

Carboxylic

acids and

derivatives

Intravenous
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The drugs given in Table 4.1 are being used for non-small cell lung cancer along

with other types of lung cancer. We have selected all the drugs either used alone

or in combination for treatment of all types of non-small cell lung cancer. Their

approved drug dosages have been retrieved through drug bank. Some of the drugs

are developed specifically for the treatment of non-small cell lung cancer while

others can be used for the treatment of other types of cancer. The most common

drugs used for the treatment of NSCLC belongs to carboxylic acids and derivatives

class and the diazanaphthalenes class respectively.

4.2 Parameters Identification

To understand the fundamental processes of each component of the designed liver

model, a few parameters were required to determine the reaction kinetics, their

mechanisms and the behavior of model components [115]. The parameters of liver

model were obtained from literature [120][106][121] and summarized in table 4.2.

Moreover, the parameters for drugs have been retrieved through pkCSM web tool

and summarized in table 4.3.

Table 4.2: Parameters estimation for components of Liver Model.

Components Parameters

Liver weight 1500 g (1.5 kg)

Hepatic flow 500 ml/min

Portal vein flow 1000 ml/min

Total liver flow
100 ml/min per 100 g

liver

Pancreas weight 60-100 g

blood flow rate in Gall-

bladder
50 ml/50 g

Flow rate in systemic

circulation
2500 ml/min
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The significant parameters of drugs considered for this research or study are ab-

sorption rate, clearance rate, toxicity (hepatotoxicity) and LD50 respectively. The

absorption rate, rate of drug clearance, LD50, and hepatotoxicities of drugs were

calculated through PKCSM tool, shown in table 4.3.

Table 4.3: The absorption and Clearance rates of selected drugs from liver

Drug Absorption
Total

Clearance
Unit

Hepato-

toxicity

LD50

value

Afatinib 90.314 0.593

Numeric

(log

ml/min/kg)

Yes
2.622

mol/kg

Bevacizumab 76.662) 0.906

Numeric

(log

ml/min/kg)

Yes
1.315

mol/kg

Carboplatin 22.203 1.099

Numeric

(log

ml/min/kg)

No
1.623

mol/kg

Cisplatin 44.62 0.533

Numeric

(log

ml/min/kg)

No
2.481

mol/kg

Crizotinib 92.006 0.571

Numeric

(log

ml/min/kg)

Yes
3.515

mol/kg

Erlotinib 94.511 0.446

Numeric

(log

ml/min/kg)

Yes
2.43

mol/kg

Gefitinib 90.992 0.937

Numeric

(log

ml/min/kg)

Yes
2.859

mol/kg
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Gemcitabine 68.247 -0.058

Numeric

(log

ml/min/kg)

Yes
2.026

mol/kg

Lorlatinib 100 0.397

Numeric

(log

ml/min/kg)

Yes
2.807

mol/kg

Methotrexate 9.947 0.37

Numeric

(log

ml/min/kg)

Yes
3.221

mol/kg

Pemetrexed 0 1.851

Numeric

(log

ml/min/kg)

Yes
2.683

mol/kg

Paclitaxel 100 -0.36

Numeric

(log

ml/min/kg)

Yes
2.776

mol/kg

The clearance rate is the most important parameters which is described as volume

of body fluid from which a drug removed from body by discharge per unit time

and bio transformation. Clearance rate basically give details about fate of drug

in human body. The accurate prediction of clearance rate is basic for medication

admission in human body [122]. Total clearance rate is sum of clearance from all

the organs i.e sum of renal, hepatic and lung clearance rate respectively.

It can be observed that all the drugs have low total clearance which increases the

half life of drug. Intestinal absorption refers rate of drug absorption depending on

drug dosage, greater the dosage higher will be absorption which is main character-

istic of an effective drug. From above data, it has been observed that Carboplatin

and Cisplatin are not involved in hepatotoxicity so we verified these drugs by

performing hepatotoxicity modeling by using our developed model which provides
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validity for these two drugs not involved in drug induced liver injury which in turn

also validate our designed model.

The above mentioned parameters were inducted to the liver model to perform

PK/PD simulations to verify different dosages for selected drugs.

4.3 Detailed Model of Liver

Model-develpment based approach is basically remodeling in a manner in which re-

searchers works and facilitate them to develop the clinical labortary tasks on their

computer screens [115]. To access the hepatotoxic effects of drugs, the detailed

model of the liver was developed. The model consists of several compartments i.e

left lobe, right lobe, falciform ligament, Gall bladder, ligamentum teres and linked

pancrease, consisting of single drug dose and its elimination route from the liver,

the model is shown in figure 4.1.

Figure 4.1: The PK/PD model of liver showing its all compartments

Here in the figure 4.1, all the linked portions of other organs are connected with

the liver. The drug enter into the liver through systemic compartment , spread
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to all the areas of liver and produce hepatotoxic effect. The circles represents the

reactions of drug with the compartments (left lobe, right lobe, falciform ligament,

Gall bladder, ligamentum teres and linked pancrease). The model is represented

in the terms of mathematical formulations is as under:

d(Drug)

dt
=

1

Central
×(kaCentral×Dose−(keCentral×Drug)×Central) (4.1)

d([CoronoryLigament].drug)

dt
= ([hepaticflow]×[portalvein]×[leftLobe].drug×

kactivity) − ([hepaticflow] × [CoronoryLigament].drug) (4.2)

d([leftlobe].drug)

dt
= ([totalflow] × flowrate× systemic.drug × kactivity)−

([hepaticflow] × [leftLobe].drug) − ([hepaticflow] × [portalvein]

× [leftLobe].drug × kactivity) (4.3)

d([Falciformligament].drug)

dt
= −([hepaticflow]×[FalciformLigament].drug)

+ ([hepaticflow] × [leftLobe].drug) (4.4)

d([LigamentumTeres].drug)

dt
= −([hepaticflow] × [LigamentumTeres].drug)

+ ([hepaticflow] × [FalciformLigament].drug) (4.5)
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d([GallBladder].drug)

dt
= −([totalflow]× [GallBladder].drug) + ([hepaticflow]

× [CoronoryLligament].drug) (4.6)

d(linkedpancrease.drug)

dt
= [hepaticflow] × [LigamentumTeres].drug)

+ ([totalflow] × [GallBladder].drug) − (kcl ∗ linkedpancrease.drug)) (4.7)

d(systemic.drug)

dt
= −([totalflow]×flowrate×systemic.drug×kactivity) (4.8)

In the above equations kactivity refers to the constant rate of drug activity, ka

shows the absorption rate of drug, the drug clearance rate is represented by kcl.

The central variable shows the central compartment of liver, total flow and flow

rate are used for blood.

4.4 Hepatotxicity Model

In order to determine the effects of drugs on the liver, the hepatotoxic model was

also designed and integrated with the liver model, shown in figure 4.2. In figure

4.2, the HT represents the toxic effects of drugs on liver and E shows the effect on

liver function due to hepatotoxicity induced by the drugs.
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Figure 4.2: The hepatotoxicity model.

The differential equations produced for the Hepatotoxicity model are following

d(E)

dt
= ((kcl × linkedpancrease.drug) + kE) (4.9)

d(HT )

dt
= ((phli2×E2×systemic.drug×k21×E×E2×HT×linkedpancrease.drug)

+ (kcl × linkedpancrease.drug) + kHT ) (4.10)

In these equations, E shows effect of drug, hepatotoxic effect is represented by HT,

and phil2 is model integration parameter.

4.5 Hepatotoxicity Modeling of Selected Drugs

Pharmacodynamics is the study of effect of drug dose on human body. Pharmaco-

dynamic modeling describes the connection of drug exposure to human body and

it helps to decide that how much dose of a drug is required for the treatment of

disease as well as tells us to what extent it will help to obtain the proper effect of

that drug [123]. Hepatotoxicity modeling is basically Pharmacodynamic modeling
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of drugs to determine their effects on liver, in which the drug doses were entered

into developed liver model, the simulations times were set according to dosing

schedule mentioned in literature and drug bank. Pharmacokinetic estimates of all

drugs were set accordingly and then graphs were generated to observe the effects

of every drug on liver. The resultant graphs of hepatotoxicity modeling are shown

in figures 4.3 to 4.14 respectively. In figure 4.3 to 4.14, the x axis represents the

time in days and y axis shows concentration of drugs in mol/liter (Blue lines) and

hepatotoxic effects (Red lines).

4.5.1 Hepatotoxicity Modeling of Afitinib

Afatinib is the is the first drug chosen for this research as it is used for the treatment

of NSCLC. The standard dose for Afatinib is 40 mg which was introduced into the

liver model on the first day of treatment and repeated once a day for cycle of 28

days. The results of hepatotoxicity modeling of Afatinib is shown in figure 4.3.

Figure 4.3: The hepatotoxicity modeling of Afatinib to determine the effects
of its concentration on liver

From figure 4.3, the x axis represents the time in days and y axis shows concentra-

tion of drugs (Blue lines) and hepatotoxic effects (Red lines). it can be observed
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that initial value for hepatotoxicity was 0 and it gradually increased day by day

as drug could not completely eliminated from body till its next dose which lead

to liver injury. Though the drug had been given for 28 days, it completely cleared

from body till 30th day which leads to high concentration of drug into the liver

which ultimately affect it by causing toxicity which cannot be reversed.

4.5.2 Hepatotoxicity Modeling of Bevacizumab

The standard dose for Bevacizumab is 25 mg which was introduced into the liver

model on the first day of treatment with repetition of once a week i.e. every 7th

day for a cycle of 3 weeks. The results of hepatotoxicity modeling of Bevacizumab

is shown in figure 4.4.

Figure 4.4: The hepatotoxicity modeling of Bevacizumab to determine the
effects of its concentration on liver

The x axis represents the time in days and y axis shows concentration of drugs

(Blue lines) and hepatotoxic effects (Red lines). It can be observed from the

figure 4.4 that initial value for hepatotoxicity was 0 at first day of induction and

it gradually increases day by day and reached to 10 mg.m2 at the completion of
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dosage cycle. Though the drug has been given for 21 days, it completely cleared

from body till 24th day after the last dose causing increase in toxicity in liver day by

day. It can also be seen that after the first administration of Bevacizumab dose into

the liver, its concentration declined with time and drug has been eliminated from

compartment before second dose administration. Bevacizumab did not accumulate

upon continuous dosage and exposure of drug did not changed with administration

of every dose.

4.5.3 Hepatotoxicity Modeling of Carboplatin

Carboplatin is used for the treatment advanced non-small cell lung cancer and

given intravenously in the form of injection in combination with Paclitaxel [124].

The standard dose for Carboplatin is 10 mg which was introduced into the liver

model on the first day of treatment with repetition of once after 21 days for a cycle

of 4 weeks. The results of hepatotoxicity modeling of Carboplatin introduced alone

in model is shown in figure 4.5.

Figure 4.5: The hepatotoxicity modeling of Carboplatin to determine the
effects of its concentration on liver
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In figure 4.5,the x axis represents the time in days and y axis shows concentration

of drugs (Blue lines) and hepatotoxic effects (Red lines), it can be observed that

initial value for hepatotoxicity was 0 at first day of induction and it gradually

increases day by day but it did not exceed from 5mg/m2 until the completion of

cycle. The resultant graph shows that Carboplatin non hepatotoxic drug for the

treatment of non small cell lung cancer.

It can also be seen that after the first administration of Carboplatin dose into

the liver, its concentration declined with time and drug has been eliminated from

compartment before second dose administration. Carboplatin did not accumulate

upon continuous dosage and exposure of drug did not changed with administration

of every dose.

4.5.4 Hepatotoxicity Modeling of Cisplatin

Cisplatin is used for the treatment advanced non-small cell lung cancer and small

cell lung cancer respectively. The standard dose for Cisplatin is 5 mg which is

inducted into the liver model on the first day of treatment with repetition of once

after 21 days for a cycle of 4 weeks. The results of hepatotoxicity modeling of

Cisplatin is shown in figure 4.6. In figure 4.6 the x axis represents the time in days

and y axis shows concentration of drugs (Blue lines) and hepatotoxic effects (Red

lines).It can be determined from the figure 4.6 that initial value for hepatotoxicity

was 0 at first day of induction and it gradually increases day by day but did not

exceed from 5mg/m2 until the completion of cycle because of firstly the dose is

very low i.e. 5 mg and secondly the dose gap is high which helps in complete

clearance of drug from liver before administration of next dose. The resultant

graph shows that Cisplatin non-hepatotoxic toxic drug for the treatment of non

small cell lung cancer. Cisplatin did not accumulate upon continuous dosage and

exposure of drug did not changed with administration of every dose.
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Figure 4.6: The hepatotoxicity modeling of Cisplatin to determine the effects
of its concentration on liver

4.5.5 Hepatotoxicity Modeling of Crizotinib

The standard dose for Crizotinib is 200-250 mg which is inducted into the liver

model on the first day of treatment and repeated twice a day for cycle of 28 days.

The results of hepatotoxicity modeling of Crizotinib is shown in figure 4.7.

Figure 4.7: The hepatotoxicity modeling of Crizotinib to determine the effects
of its concentration on liver
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Here the x axis represents the time in days and y axis shows concentration of

drugs (Blue lines) and hepatotoxic effects (Red lines).From figure 4.7, it can be

observed that initial value for hepatotoxicity was 0 and it gradually increases day

by day exceeding 100 mg/m2 at the end of one cycle, which is very high for

normal human liver to cause acute liver failure. Though the drug has been given

for 28 days, it completely cleared from body till 30th day which leads to high

concentration of drug into the liver during whole cycle which ultimately affect it

by causing hepatotoxicity which cannot be reversed.

4.5.6 Hepatotoxicity Modeling of Erlotinib

The standard dose for Erlotinib is 150 mg which is inducted into the liver model

on the first day of treatment and repeated thrice a day i.e. after every meal, for

cycle of 28 days. The result of hepatotoxicity modeling of Erlotinib is shown in

figure 4.8.

Figure 4.8: The hepatotoxicity modeling of Erlotinib to determine the effects
of its concentration on liver
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The x axis represents the time in days and y axis shows concentration of drugs

(Blue lines) and hepatotoxic effects (Red lines). It can be observed from the figure

4.8 that initial value for hepatotoxicity was 0 and it gradually increases day by

day till reaches more than 200 mg/m2 at the end of cycle which is extremely

high to cause acute liver failure. Though the drug has been given for 28 days, it

completely cleared from body till 30th day which leads to high concentration of

drug into the liver during whole cycle which ultimately affect it by causing toxicity

which cannot be reversed.

It can also be seen that the concentration of Erlotinib gradually increases in liver

with time reaches to 2000 mg at the end of one cycle. The drug accumulates into

liver because it does not clear out completely before the adiminstration of next

dose. The drug exposure is very high due to continuous dosage once a day i.e.

three times in one day which leads to drug induced liver injury.

4.5.7 Hepatotoxicity Modeling of Gefitinib

Gefitinib is used for the treatment of metastatic non-small cell lung cancer and

the standard dose for Gefitinib is 250 mg which is inducted into the liver model

on the first day of treatment and repeated once a day for a cycle of 28 days. The

result of hepatotoxicity modeling of Gefitinib is shown in figure 4.9.

The x axis represents the time in days and y axis shows concentration of drugs

(Blue lines) and hepatotoxic effects (Red lines). From figure 4.9, it can be observed

that initial value for hepatotoxicity was 0 and it gradually increases day by day till

reaches more than 150 mg/m2 at the end of cycle which is very high to cause acute

liver failure. Though the drug has been given for 28 days, it completely cleared

from body till 30th day which leads to high concentration of drug into the liver

during whole cycle which ultimately affect it by causing toxicity which cannot be

reversed.

It can also be seen that the concentration of Gefitinib gradually increases in liver

with time reaches to 800 mg.m2 at the end of one cycle. The drug accumulates
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into liver because it does not clear out completely before the adiminstration of

next dose. The drug exposure is very high due to continuous dosage which leads

to drug induced liver injury.

Figure 4.9: The hepatotoxicity modeling of Gefitinib to determine the effects
of its concentration on liver

4.5.8 Hepatotoxicity Modeling of Gemcitabine

The standard dose of Gemcitabine used for the treatment of NSCLC (stage IV) is

1000 mg which is inducted in liver model at the first day of treatment with repeti-

tion of once a week for a 28 days cycle respectively. The results of hepatotoxicity

modeling of Gemcitabine is shown in figure 4.10.

The x axis represents the time in days and y axis shows concentration of drugs

(Blue lines) and hepatotoxic effects (Red lines). It can be observed from the figure

4.10 that initial value for hepatotoxicity was 0 at first day of induction and it

gradually increases day by day but it can be observed that toxicity in liver did
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not exceed from 50mg.m2 until the completion of cycle because though the dose

is high but the drug eliminates from liver before administration of next dose. The

resultant graph shows that Gemcitabine is hepatotoxic drug for the treatment

of non small cell lung cancer. Gemcitabine did not accumulate upon continuous

dosage and exposure of drug did not changed with administration of every dose.

Figure 4.10: The hepatotoxicity modeling of Gemcitabine to determine the
effects of its concentration on liver

4.5.9 Hepatotoxicity Modeling of Lorlatinib

Lorlatinib is used for the treatment of metastatic non-small cell lung cancer and

the standard dose for Lorlatinib is 100 mg which is inducted into the liver model

on the first day of treatment and repeated once a day for a cycle of 28 days. The

results of hepatotoxicity modeling of Lorlatinib is shown in figure 4.11.

In figure 4.11,The x axis represents the time in days and y axis shows concentration

of drugs (Blue lines) and hepatotoxic effects (Red lines), it can be observed that
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initial value for hepatotoxicity was 0 at first day of induction and it gradually

increases day by day but it can be seen that toxicity in liver did not exceed

from 50mg/m2 until the completion of cycle. The resultant graph shows that

Lorlatinib is hepatotoxic drug for the treatment of non small cell lung cancer but

less hepatotoxic as compared to other drugs.

Figure 4.11: The hepatotoxicity modeling of Lorlatinib to determine the ef-
fects of its concentration on liver

4.5.10 Hepatotoxicity Modeling of Methotrexate

Methotrexate is used for the treatment of squamous cell carcinoma which is one

of the type of non-small cell carcinoma that constitutes 25 to 30% of all cases of

lung cancer [59] . The standard dose for Methotrexate is 2.5 mg which is inducted

into the liver model on the first day of treatment and repeated once a week for a

cycle of 4 weeks. The results of hepatotoxicity modeling of Methotrexate is shown

in figure 4.12.
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Figure 4.12: The hepatotoxicity modeling of Methotrexate to determine the
effects of its concentration on liver

The x axis represents the time in days and y axis shows concentration of drugs

(Blue lines) and hepatotoxic effects (Red lines). It can be observed from the figure

4.12 that the value for hepatotoxicity did not change from first day of induction

to the completion of cycle. The resultant graph shows that Methtrexate falls in

the category of less toxic drug for the treatment of squamous cell carcinoma.

4.5.11 Hepatotoxicity Modeling of Paclitaxel

Paclitaxel is used for the treatment non-small cell lung cancer and given intra-

venously in the form of injection in combination with Carboplatin or Cisplatin

[124]. The standard dose for Paclitaxel is 135 mg which is introduced into the

liver model on the first day of treatment with repetition of once a day for a cycle

of 3 weeks. The results of hepatotoxicity modeling of Paclitaxel introduced alone

in model is shown in figure 4.13.
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Figure 4.13: The hepatotoxicity modeling of Paclitaxel to determine the ef-
fects of its concentration on liver

The x axis represents the time in days and y axis shows concentration of drugs

(Blue lines) and hepatotoxic effects (Red lines). In figure 4.13, it can be observed

that initial value for hepatotoxicity was 0 and it gradually increases day by day till

reaches more than 80 mg/m2 at the end of one cycle which can cause liver injury.

Though the drug has been given for 21 days, it completely cleared from body till

30th day which leads to high concentration of drug into the liver during whole

cycle which ultimately affect it by causing toxicity which cannot be reversed.

It can also be observed that the concentration of Paclitaxel gradually increases in

liver with time reaches to 800 mglm2 at the end of one cycle. The drug accumulates

into liver because it does not clear out completely before the adiminstration of next

dose. The drug exposure is very high due to continuous dosage which leads to drug

induced liver injury.
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4.5.12 Hepatotoxicity Modeling of Pemetrexed

The standard dose for Pemetrexed is 500 mg which is inducted into the liver model

on the first day of treatment with repetition of once after 21 days cycle of 4 cycles.

The results of hepatotoxicity modeling of Pemetrexed introduced alone in model

is shown in figure 4.14.

Figure 4.14: The hepatotoxicity modeling of Pemetrexed to determine the
effects of its concentration on liver

The x axis represents the time in days and y axis shows concentration of drugs

(Blue lines) and hepatotoxic effects (Red lines). It can be observed from the

figure 4.14 that initial value for hepatotoxicity was 0 at first day of induction and

it gradually increases day by day but did not exceed from 50mg/m2 until the

completion of cycle because though the dose is high but the drug absorption rate

is very low and eliminates from liver before administration of next dose because

of huge gap between doses . The resultant graph shows that Pemetrexed is less

toxic drug for the treatment of non small cell lung cancer as compared to other
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drugs. Pemetrexed did not accumulate upon continuous dosage and exposure of

drug did not changed with administration of every dose.

4.6 Validation of Model

It can be observed from table 4.3 that Carboplatin and Cisplatin are not involved in

causing hepatotoxicity. We introduced these drug’s dosages along with their dose

schedule into our designed liver model and performed hepatotoxicity modeling.

The resultant graphs shown in figure 4.5 and 4.6 declared that Carboplatin and

Cisplatin induced less than 5 mg/m2 hepatotoxicity which validates our liver model

and helped us to determined the hepatotoxicity of all the other drugs used for the

treatment of Non-Small Cell Lung Cancer.

Figure 4.15: The hepatotoxicity modeling of Carboplatin and Cisplatin. The
x axis represents the time in days and y axis shows concentration of drugs (Blue
lines) and hepatotoxic effects (Red lines). A) The hepatotoxicity modeling of
Carboplatin shows 00 hepatotoxicity less than 5mg/m2. B) The hepatotoxicity

modeling of Cisplatin shows hepatotoxicity less than 5mg/m2.
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4.7 Suggestion of New Dosage Criteria to

Reduce Hepatotoxicity

It can be observed from figures 4.3, 4.7, 4.8, 4.9 and 4.13 that Afitinib, Crizotinib,

Erlotinib, Gefitinib and Paclitaxel are involved are in causing hepatotoxicity in

Non-small cell lung cancer patients during treatment leading to acute liver failure.

In order to reduce hepatotoxicity we have tried new drug dosages for Afitinib,

Crizotinib, Erlotinib, Gefitinib and Paclitaxel and inducted them in our designed

liver model. The results of hepatotoxicity modeling of new drug dosages of all

these five drugs are shown in figure 4.16 to 4.20 respectively. In figure 4.16 to

4.20, the x axis represents the time in days and y axis shows concentration of

drugs (Blue lines) and hepatotoxic effects (Red lines).

The general dose for Afitinib ranges from 20 to 40 mg but standard dose of Afi-

tinib uses for the treatment of NSCLC is 40 mg once a day for a cycle of 28 days

respectively. The graph in figure 4.3 shows that this drug dose causes hepatotoxi-

city more than 20 mg/m2 for one cycle. Therefore, we used the minimum dose of

Afitinib i.e. 20 mg and inducted in liver model on the first day of treatment and

repeated once a day for a cycle of 28 days. The result of hepatotoxicity modeling

of new drug dosage of Afitinib is shown in figure 4.16.

In figure 4.16, The x axis represents the time in days and y axis shows concentration

of drugs (Blue lines) and hepatotoxic effects (Red lines). It can be observed that

initial value for hepatotoxicity was 0 and it gradually increases day by day till

reaches 15 mg/m2 at the end of cycle. Therefore by just reducing the drug dose

to minimum dose, the hepatotoxicity reduces up to 10 mg/m2per cycle. The

hepatotoxicity can be further reduced by reducing dose schedule from once a day

to after four days but this may slow down the treatment process to a very great

extent. Therefore it can only be suggested if this much slow treatment is acceptable

by doctors and researchers.
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Figure 4.16: The hepatotoxicity modeling of suggested drug dose of Afitinib
to determine the effects of its concentration on liver

The standard dose for Crizotinib uses for the treatment of NSCLC is 200 mg twice

a day for a cycle of 28 days respectively. The graph in figure 4.7 shows that this

drug dose causes hepatotoxicity more than 100 mg/m2 for one cycle. Therefore,

we reduced the dose of Crizotinib from 200 mg to 100 mg and inducted in liver

model on the first day of treatment, repeated twice a day for a cycle of 28 days.

The result of hepatotoxicity modeling of new drug dosage of Crizotinib is shown

in figure 4.17.

The x axis represents the time in days and y axis shows concentration of drugs

(Blue lines) and hepatotoxic effects (Red lines). The figure 4.17 shows that initial

value for hepatotoxicity was 0 and it gradually increases day by day till reaches

60 mg/m2 at the end of cycle. Therefore by just reducing the drug dose from

200 mg to 100 mg, the hepatotoxicity reduces upto 50 mg/m2 per cycle. The

hepatotoxicity can be further reduced by reducing dose schedule from twice a

day to after two days but this may slow down the treatment process to a very
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great extent. Therefore it can only be suggested if this much slow treatment is

acceptable by doctors and researchers.

Figure 4.17: The hepatotoxicity modeling of suggested drug dose of Crizotinib
to determine the effects of its concentration on liver

The general dose for Erlotinib ranges from 25 to 150 mg but standard dose of

Erlotinib uses for the treatment of NSCLC is 150 mg thrice a day for a cycle of

28 days respectively. The graph in figure 4.8 shows that this drug dose causes

hepatotoxicity more than 200 mg/m2 for one cycle. Therefore, we used the same

dose of Erlotinib i.e. 150 mg but reduces the dose schedule from thrice a day to

once a day and inducted in liver model on the first day of treatment and repeated

once a day for a cycle of 28 days. The result of hepatotoxicity modeling of new

drug dosage of Erlotinib is shown in figure 4.18.
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Figure 4.18: The hepatotoxicity modeling of suggested drug dose of Erlotinib
to determine the effects of its concentration on liver

In figure 4.18,The x axis represents the time in days and y axis shows concentration

of drugs (Blue lines) and hepatotoxic effects (Red lines), it can be observed that

initial value for hepatotoxicity was 0 and it gradually increases day by day till

reaches 90 mg/m2 at the end of cycle. Therefore by just reducing the drug dose

schedule from thrice a day to once a day, the hepatotoxicity reduces from 200

to 90 mg/m2 per cycle. The hepatotoxicity can be further reduced by reducing

drug dose but this may slow down the treatment process to a very great extent.

Therefore it can only be suggested if this much slow treatment is acceptable by

doctors and researchers.

The standard dose of Gefitinib uses for the treatment of NSCLC is 250 mg once

a day for a cycle of 28 days respectively. The graph in figure 4.9 shows that this

drug dose causes hepatotoxicity more than 150 mg/m2 for one cycle. Therefore,

we reduce the dose of Gefitinib from 250 to 100 mg and inducted in liver model

on the first day of treatment and repeated once a day for a cycle of 28 days. The
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result of hepatotoxicity modeling of new drug dosage of Gefitinib is shown in figure

4.19.

Figure 4.19: The hepatotoxicity modeling of suggested drug dose of Gefitinib
to determine the effects of its concentration on liver

In figure 4.19, The x axis represents the time in days and y axis shows concentration

of drugs (Blue lines) and hepatotoxic effects (Red lines), it can be observed that

initial value for hepatotoxicity was 0 and it gradually increases day by day till

reaches 50 mg/m2 at the end of cycle. Therefore by just reducing the drug dose

from 250 to 100, the hepatotoxicity reduces from 150 to 50 mg/m2 per cycle. The

hepatotoxicity can be further reduced by reducing drug dose schedule but this may

slow down the treatment process to a very great extent. Therefore it can only be

suggested if this much slow treatment is acceptable by doctors and researchers.

The standard dose of Paclitaxel uses for the treatment of NSCLC is 135 mg once

a day for a cycle of 3 weeks respectively. The graph in figure 4.13 shows that this

drug dose causes hepatotoxicity more than 80 mg/m2 for one cycle. Therefore, we
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reduce the dose of Paclitaxe from 135 to 100 mg and inducted in liver model on the

first day of treatment and repeated once a day for a cycle of 21 days. The result of

hepatotoxicity modeling of new drug dosage of Paclitaxe is shown in figure 4.20.

Figure 4.20: The hepatotoxicity modeling of suggested drug dose of Paclitaxel
to determine the effects of its concentration on liver

The x axis represents the time in days and y axis shows concentration of drugs

(Blue lines) and hepatotoxic effects (Red lines). The figure 4.20 shows that initial

value for hepatotoxicity was 0 and it gradually increases day by day till reaches 50

mg/m2 at the end of cycle. Therefore by just reducing the drug dose from 135 to

100, the hepatotoxicity reduces from 80 to 50 mg/m2 per cycle. The hepatotoxicity

can be further reduced by reducing drug dose schedule but this may slow down

the treatment process to a very great extent. Therefore it can only be suggested

if this much slow treatment is acceptable by doctors and researchers.



Chapter 5

Conclusion and Future

Recommendations

Cancer is the leading cause of deaths worldwide and the most common types of can-

cers that are causing morality worldwide are lung cancer, breast cancer, prostate

cancer, colorectal cancer and skin cancer etc. Lung cancer is most common type

of cancer leading to approximately 9.6 million deaths per year worldwide. There

are two types of lung cancer , small cell lung cancer and non-small cell lung can-

cer. Non-small cell lung cancer is causing 75-85% of deaths caused by lung cancer

worldwide. Treatment options for non-small cell lung cancer are chemotherapy,

radiotherapy, surgery etc. For chemotherapy in the treatment of NSCLC, there

are approximately 12 drugs that are used with standard dosages approved from

FDA. Liver is a major organ that plays a central role in clearing chemicals and

transforming the chemical agents hence susceptible of toxicity from the drugs used

for the treatment of a disease. Drug-induced liver damage is one of major cause

of acute and chronic liver disease. Pharmaceutical companies have adopted com-

putational modeling approaches to estimate the toxicity, efficacy and mechanisms

adopted by pharmaceutical ingredients. PK/PD modeling and simulations helps

in estimating the safety and feasibility of medicines for better use in the treatment

of cancer or any other disease by reducing hepatotoxicity leading to inhibition of

liver failure.

60
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To determine the effects of all the drugs used for the treatment of NSCLC on

liver, we designed a liver model based on old data and performed hepatotoxicity

modeling on these 12 drugs individually. The hepatotoxicity results of all these

drugs shows that Carboplatin and Cisplatin are non hepatotoxic drugs while Be-

vacizumab, Gemcitabine, Lorlatinib, Methotrexate and Pemetrexed are less hepa-

totoxic drugs. In addition, Afitinib, Crizotinib, Erlotinib, Gefitinib and Paclitaxel

are highly hepatotoxic drugs that are used for the treatment of non-small cell

lung cancer. All these drugs other than Carboplatin and Cisplatin are involved

in causing hepatotoxicity leading to drug induced liver injury in non-small cell

lung cancer patients. By performing hepatotoxicity modeling on Carboplatin and

Cisplatin by using our designed model, we validate the designed liver model by

proving the non- hepatotoxicity of these drugs.

By reducing the drug dose or drug dose schedule we can reduce hepatotoxic drugs

into less or non-hepatotoxic drugs. Therefore, we suggested new drug dosages

and new dose schedule and inducted them into liver model, that helps in reducing

hepatotoxicity of highly hepatotoxic drugs converting them into less hepatotoxic

drugs.

Hence we suggest the mentioned drug doses and drug schedule of Afitinib, Crizo-

tinib, Erlotinib, Gefitinib and Paclitaxel for further studies and implementing

them for the treatment of Non small cell lung cancer in case of chemotherapy with

these drugs. The designed liver model is generic which can be used for research of

all the different drugs used for treatment of different diseases and different types

of cancer.
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